
RECONFIGURABLE COMPUTING FOR COMPUTATIONAL SCIENCE: A NEW FOCUS
IN HIGH PERFORMANCE COMPUTING

Dale Shires and Brian Henz

U.S. Army Research Laboratory
High Performance Computing Division
Aberdeen Proving Ground, MD 21005

Vincent Natoli and David Richie

Stone Ridge Technology, Inc.
1604 Stone Ridge Way

Bel Air, MD 21015

ABSTRACT

 Computational science applications and advanced
scientific computing have made tremendous gains in the
past decade. Researchers are regularly employing the
power of large computing systems and parallel
processing to tackle larger and more complex problems
in all of the physical sciences. For the past decade or so,
most of this growth in computing power has been “free”
with increased efficiency more-or-less governed by
Moore’s Law. However, increases in performance are
becoming harder to achieve due to the complexity of the
parallel computing platforms and the software required
for these systems. Reconfigurable computing, or
heterogeneous computing, is offering some hope to the
scientific computing community as a means to continued
growth in computing capability. This paper offers a
glimpse of the hardware and software associated with
this new technology and discusses how the new
paradigm functions for computational science.

1. INTRODUCTION

The term High Performance Computing (HPC) has
different meanings to different people. At the least, it
should denote a sense of “attention to detail” with a
focus on squeezing as much performance as possible
from a computer to maximize some metric. These
metrics can also be a bit soft in definition; they could be
a reduced wall-clock time to solution or optimizing
arithmetic operations to boost floating-point calculations
per second.

Furthermore, a concern for code execution speed
implies an interest in parallel computing; “The most
powerful computer at any given time must, by definition,
be a parallel machine” (Carriero, 1992). This parallelism
can be overt as in packing as many distinct processing
elements into a chassis as possible and tying them
together using a fast interconnect. Overt parallelism is
usually leveraged in one of two ways. First, task
parallelism allows some complex task to be split and
executed concurrently on several processors at once.
Second, data parallelism represents cases where the
operation to be applied is fairly straightforward but the

data sets can be huge. Parallelism here takes advantage of
spreading these large data sets over numerous processors.

Parallelism can also be covert and happening at the
“atomistic” level of the Central Processing Unit (CPUs)
through instruction-level parallelism. Many of today’s
CPUs have the capacity to perform instruction level
parallelism by issuing several low-level instructions at
each clock cycle. Capitalizing on this capability is usually
within the purview of the compilers that translate high-
level languages like “C” to assembly-level code. The
results can be dramatic depending on the depth of the
pipeline that forms.

HPC and parallelism become one concept denoting an
attempt to maximize the potential for computer-based
solutions. However, how does HPC relate to the
applications under consideration? While HPC and
parallelism have obvious utility to industry, and as we will
see have been unknowingly tied to the scientific world, the
focus here is on computer applications to research fields.
To denote this marriage of research application along with
parallelism and HPC as the enabling technologies, the term
“computational science” is often used. The term, also
commonly encountered as “scientific computing,” is a
catch-all for the process of developing mathematical and
numerical approaches to address any number of fields,
including astronomy, biology, structural mechanics, nano-
science, and electromagnetism, that attempt to apply and
use computers to address these problems and run these
models.

Computational science has evolved and grown
considerably over the past decade or so. Today, several
universities offer programs of study and degrees in the
field. In the DOD, the High Performance Computing
Modernization Program (HPCMP) has been in existence
since 1992 and now has ten recognized Computational
Technology Areas (CTAs) that are supported. Most
researchers in these areas, such as computational structural
mechanics and computational fluid dynamics, use the
computing hardware supplied by the HPCMP and would
classify themselves by their native training and also as
computational scientists.

While history is on the side of scientific computing,
there is a growing awareness that the future is a bit
uncertain and potentially bleak. Future growth and

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 2006

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Reconfigurable Computing For Computational Science: A New Focus In
High Performance Computing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory High Performance Computing Division
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002075., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

scalability into the realm of petaflop computing with
traditional computing architectures is looking more-and-
more impossible if the focus remains on using traditional
computing architectures and software development
paradigms. While computers have grown larger and
larger, the ability to achieve anything close to theoretical
peak speeds has plunged. Software engineering proves
to be very difficult as the requirements to maintain
portability and efficiency coexist with the overall
requirement to map to complex architectures.

While current scalability will no doubt continue for
some time, we are quickly reaching the point of
diminishing returns for current practice. The reasons
behind this are vast and will be explored in the following
sections. However, there is hope to be found in a new
concept known as reconfigurable computing. This new
approach attempts to leverage on reprogrammable
hardware. Numerous challenges remain in this new
technology, but it is rapidly maturing and provides great
potential to the scientific computing field.

2. THE STATE OF HPC

While quantum or biological computing remain

interesting research areas in theoretical computing,
current technology is founded in binary computing.
These parallel computing platforms have certainly grown
in size and changed considerably over time. This is
highlighted in the Top 500 list. Since 1993, this list has
been compiled and maintained by a group of industrial
and academic teams. This list reveals several striking
trends. First, there has been a dramatic shift from vector
to scalar computing. As of June 2006, only 1.6% of the
list is comprised of vector computers with 98.4% being
scalar processors (Top 500). Second, there has been a
distinct move toward cluster architectures due largely to
the ability of centers to procure large-scale systems at a
perceived very high performance-to-price ratio. Finally,
Intel-based architectures running the Linux operating
system had grown to account for over 60% of the
systems on the Top 500 list by 2004. This represents
stunning growth where as recently as 2000 these
architectures accounted for essentially no representation
on the list.

These changes have been dramatic and at no small
cost to the user community. Software developers for
these systems continue to struggle to develop code that is
portable but often has to take into account the underlying
architecture of the system. While high-level languages
are designed to remove some of these constrains with the
compiler translating the algorithm to the lowest machine
languages, power-users would still often dive into low-
level optimizations specifically tailored to the host
CPUs. The processor and memory interconnects,
whether they be shared memory, distributed shared
memory, or distributed memory, remained important
points of consideration as they could dictate the

appropriate choice of parallel programming that would
best fit the situation.

In this regard, several parallel programming
paradigms exist today to facilitate use of these systems;
and more continue to surface. Historically, most of these
approaches have involved the use of libraries called from
other languages (such as the tuple approach found in
Linda), pragmas added to languages (such as found in
OpenMP), and outright parallel programming languages
(such as High Performance Fortran [HPF]). The current
standard is the Message-Passing Interface (MPI) that uses
the library approach to parallelism. Hooks are provided
for numerous languages including the various flavors of
Fortran, C, and C++. Other languages such as Unified
Parallel C (UPC) and Co-Array Fortran (CAF) are getting
some attention but remain immature.

Gauging the level of success of codes on HPC
platforms is highly subjective. Many codes in fields such
as signal and image processing are embarrassingly parallel
and will routinely operate at over 70% efficiency and scale
almost linearly. Other software, such as codes based on
unstructured grids, will be lucky to achieve even 10% of
peak performance due to constant pointer chasing on the
references to grid points. Regardless, any decrease in
overall execution time provides the opportunity for more
runs or a faster time to solution; both considered wins for
any researcher.

3. BARRIERS TO CONTINUED GROWTH

HPC remains a continually evolving field; its final

state is yet unknown. Machines with thousands of
processors are now common and more affordable due to
the focus on clustered commodity processors. What is
quickly becoming apparent is that limiting factors in both
market and physical design are converging that will limit
the performance of these systems in the future. Problem
areas can be classified in terms of hardware and software.

3.1 Hardware

As indicated, hardware advances over the past several

decades have been empirically observed with remarkable
precision to obey Moore’s Law that predicts an advance in
scalar performance by about a factor of two every eighteen
months. Maintaining this rate has become problematic as
power dissipation and other size-limiting factors become
more pronounced at smaller feature size.

Chip designers also continue to struggle with the
bottlenecks inherent when accessing off-chip main
memory. The costly addition of multi-tiered cache
systems has helped alleviate some of this access penalty,
but the requisite computer cycles to access deeper caches
has also increased accordingly. The last key limiting
factor is the sustained performance achievable from
clusters with massive numbers of commodity processors.
The complex mix of memory bandwidth, interconnection

latencies, and general algorithm scheduling at the
compiler/processor level are all limiting factors.

3.2 Software

 The challenges at producing viable code for faster
and more complex architectures are just as daunting, if
not more, than those found in the hardware design. The
difficulties run the range from job scheduling, task or
domain decomposition, load balancing, and management
of unwieldy data sets. Software engineering has become
a much more time-consuming task for the computational
scientist.

It is a relatively safe assumption to say that as the
number of processors and the complexity of the
computing architectures increase, this problem will only
get worse. While the MPI model of parallelism has
mapped fairly well to the computers fielded to date, there
is no certainty that this will remain the case in out years.
Partly because of this, several vendors are already
reaching out into new languages such as Chapel and X10
to target the advanced hardware being designed for peta
flop-scale computing (HPCWire, 2006).

There really is little reason to hope that these new
approaches will represent a breakthrough in software
engineering for these systems. While they may more
readily map to peta-scale architectures, the users of these
languages will undoubtedly be exposed to the same
difficulties experienced while developing or porting
codes to a new language. It has been noted that
successful HPC software development projects routinely
require a time span of about a decade (Post, 2004).
Focus on continually emerging and developing
languages in HPC software engineering significantly
raises the level of risk in a project. It can render a
project irrelevant in the worst case with either the
computer or software being outdated at the time of the
first software beta test.

3.3 Capacity versus capability

While generally unbeknownst to the computational

scientist, for much of the last 20 years the interests of the
HPC users and those of the general-purpose commodity
market have been aligned resulting in consistent, reliable
improvement in the field. During this time, the HPC
community has had a relatively free ride on Moore’s
Law that has led commodity solutions to dominate the
HPC market. In some ways this has been very good to
the HPC market. There is an excellent performance-to-
price ratio and skill sets common in the computer market
can be applied to HPC.

However, there are some serious cracks that are
starting to become visible in this reality. As stated, there
is a low sustained performance rate with HPC systems at
roughly 10% of overall peak speeds. There is less and
less motivation for chip vendors to provide massive

floating-point support and performance. Doing so further
complicates chip design and sacrifices other functionality
more important to commodity chips. Furthermore,
programming models widely accepted for the general
community may not translate well to the HPC world. A
common example of this is the heavy use of pointers in the
C language. Pointer aliasing difficulties in compiling this
type of code often leads to sub-optimal performance on
large-scale systems since the compiler cannot make any
assumptions as to the parallelizability of loops containing
these structures.

So, the current state of HPC looks good at first glance.
There is tremendous computing capacity. However, there
is a widening gap in terms of capability. The gap is getting
wider by the day as newer approaches in hardware, such as
the multi-core chip, make their appearance on the market.
While the capacity is growing, the capability (as found in
the software) is still lacking. Suggestions on how best to
handle the new reality focus largely on traditional software
engineering practices to lessen the risk of new hardware
insertion and extend application lifecycles (Meyer, 2006).
While this is sound advice, it is not particularly reassuring.

Within the wider commercial computing industry,
there was often a dichotomy; either you were interested
more in hardware design or you were more interested in
software engineering. For computational scientists, the
two camps are rather like a pendulum swinging from one
extreme to the other. Early computing focused on explicit
algorithm design for single-purpose computers. Assembly
language coding was far more interested in underlying
hardware design. With the advent of compiler technology
in the 1950’s more attention was being placed on software
development in high-level languages to allow for ease of
programming, portability, and software longevity (Aho,
1987). The compiler would now be responsible for
mapping to the low-level instructions of the CPU.

The reality, however, is that all computational
scientists seek an ideal solution from both perspectives.
The use of commodity chips has certainly not relieved the
field from a required attention to underlying details. From
the hardware side, most code profiling and optimization
efforts require a vast array of knowledge about the
underlying chipsets to fully optimize code. For example,
with superscalar architectures (those that can issue
multiple low-level instructions per cycle), only through
detailed analysis of the assembly code can one determine
how well the instruction scheduler of a compiler has done.
Often source code changes may be required if a failure to
fully pipeline code has occurred. From the software side,
an attempt to realize the full potential of development
approaches such as object-oriented design is also not
deterring the community from investigating the use of
languages such as C++, for example.

A promising approach to push HPC to the next level is
found by paying attention to both hardware and software in
a unified way. Reconfigurable computing blends custom
hardware design with high-level language approaches to

see the process as one unified endeavor. This is a
fundamentally different way of viewing HPC that
certainly requires more work, but the potential reward is
considerable.

4. RECONFIGURABLE COMPUTING FOR HPC

As discussed, the dependence on increased clock speed
and increased number of processors to allow for
continued growth in the field of computational science is
now in jeopardy. However, reconfigurable computing is
a rapidly maturing field that offers great hope for
meeting the demanding requirements of computational
scientists. A quick definition is in order.

“Reconfigurable computing is computer
processing with highly flexible computing
fabrics. The principal difference when
compared to using ordinary microprocessors is
the ability to make substantial changes to the
data path itself in addition to the control flow.”
(Wikipedia, 2006)
Of course, these lofty descriptions have to find their

way into actual practical use. This section discusses the
hardware that is being used to realize these goals. The
technology has been in existence for some time, but has
matured to the point of being useful for the HPC
community. We conclude this section by discussing the
programming methodology for these systems and the
complexity involved.

4.1 Hardware

Reconfigurable computing has its foundation in
commodity-based hardware that gives HPC algorithm
designers direct access to digital circuits designed
specifically to address their problems. Custom-designed
circuits present the highest performance approach
possible for today’s binary computer systems. One way
to build such a circuit in reusable hardware is through the
use of Field Programmable Gate Array (FPGA) devices.

FPGAs provide a general-purpose programming
device that is completely customizable by the end-user.
An FPGA is usually supplied as a stand-alone board or
as a component that can be plugged into a server. These
connections are usually done though a PCI or PCI-X card
slot. Connections using PCI-Express are just coming on-
line. Two manufacturers, Xilinx and Altera, have the
main market on the FPGAs themselves. The actual
FPGA can come in a wide variety of sizes with different
internal and external interfaces.

These boards come in a wide variety of designs that
are customizable based on the desired functionality of
the board. Many can also be expanded by modules.
Boards are available with different configurations and
types of memory. Boards may also incorporate
processors coupled with the FPGA for certain types of
process load-sharing.

Figure 1 shows a simple FPGA training board that
connects through serial ports to a host computer. The
board has LEDs and several switches and buttons that can
be polled by the interface libraries to code running on the
server. The actual FPGA on the board is a Xilinx Spartan.

Figure 1: A sample FPGA training board.

Any digital function can be mapped to a FPGA but
they have historically showed a preference for integer- and
bit-based operations. This is mainly due to the limited size
of the fabric, but this is changing. The basic component of
a FPGA is a static RAM and a connection framework.
These devices roughly track the speed of SRAM
technology with clock speeds currently up to 500 MHz
(Fernando, 2006). Floating-point operations and library
functions (such as the fast Fourier transform [FFT]) can
take a large portion of the switching fabric to implement.

An algorithm is encoded as a digital design and
mapped to a switching fabric made up of logic cells.
FPGAs are designed to emulate integrated circuits. If an
algorithm is “synthesizable” and burned on a chip, it can
also be “simulated” in an FPGA. Figure 2 is a simplistic
graphical depiction of connected gates that are formed
after an algorithm is placed on a FGPA.

Figure 2: A graphical representation of mapping digital

circuit descriptions to FPGA fabric.

While the outlook for traditional CPUs into the future
is a bit uncertain, the converse is true for FPGAs.
DeHon’s Law is the analog of Moore’s Law that governs
performance on reconfigurable chips (DeHon, 2000). It

Software
description of

circuit
(VHDL)

1
1
0
0
1
0
1
0
0

+ =

Disconnected Gates Connected Gates

observes that the computational capacity of
reconfigurable hardware grows at a rate roughly twice
that of general-purpose CPUs.

We have provided many examples of where FPGAs
differ from traditional CPUs. As far as hardware goes,
the one that makes them very attractive is simple. CPUs
essentially do one one thing at a time at very high clock
speeds whereas FPGAs can do a multitude of things at a
slower clock speed. The traditional CPU in use today
follows the von Neumann sequential processing
paradigm. That is, instructions are fetched and executed
and results are stored in a continuous sequential fashion.
The fact that memory is separate from the processing
unit in this architecture leads to a condition known as the
von Neumann bottleneck; these are the delays from
reading and writing to main memory. The addition of
cache memory has been promoted over the years to
alleviate some of this forced-wait, spin-idle time.

FPGAs overcome these sequential barriers by
allowing circuit designers to operate both in space and
time. Algorithms are laid out in space on
reprogrammable hardware. Instruction-level parallelism
is the most obvious form of speedup resulting from this
capability. Multiple copies of the same computation can
be carried out simultaneously by unrolling or strip-
mining the heavily used loops in an algorithm.
Incredibly deep pipelines can also be formed for more
step-wise operations.

Speedup through other means is also possible on
large FPGA fabric. Separate tasks can be executed
concurrently with no data or time dependencies. There is
also the potential for reduced latency as potentially large
data structures can be laid out and maintained in lookup
tables in FPGA fabric vice tiered memory systems. Stall
cycles are removed with the von Neumann bottleneck
essentially disappearing.

4.2 Programming

Programming represents a significant barrier to the
use of FPGA technology. Programming a FPGA is
fundamentally different than general-purpose processors.
Certainly with current programming, not considering
parallelism for now, high-level languages have been a
tremendous help in quickly fielding software systems
that are portable and efficient. As stated earlier, some of
this speedy development can get bogged down in an
attempt to squeeze every last bit of performance from the
CPUs.

FPGAs have a somewhat complex development
environment. Programming FPGAs in a traditional sense
is done with a Hardware Description Language (HDL).
These languages tend to favor digital designers as they
are used to define circuit connections. Two of the most
prevalent languages in use are VHSIC Hardware
Description Language (VHDL) and Verilog. VHDL has
a similar look and feel of the Ada programming language

and is widely used in DOD-related efforts. Verilog has the
look and feel of the C programming language. Both
languages have loyal followings with ample arguments for
and against both approaches. A small piece of example
VHDL code is given in Figure 3.

-- sqrt8.vhdl unsigned integer sqrt 8-bits
computing unsigned integer 4-bits
-- sqrt(00000100) = 0010 sqrt(4)=2
-- sqrt(01000000) = 1000 sqrt(64)=8
library IEEE;
use IEEE.std_logic_1164.all;

architecture circuits of Sm is
 signal t011, t111, t010, t001, t100, td :
std_logic;
begin -- circuits of Sm
 t011 <= (not x) and y and b;
 t111 <= x and y and b;
 t010 <= (not x) and y and (not b);
 t001 <= (not x) and (not y) and b;
 t100 <= x and (not y) and (not b);
 bo <= t011 or t111 or t010 or t001;
 td <= t100 or t001 or t010 or t111;
 d <= td when u=’1’ else x;
end architecture circuits; -- of Sm

Figure 3: Example VHDL code.

 The FPGA development cycle is also different from
that found in traditional software engineering for generic
processors. First, parallel algorithms require a slightly
different focus from designers who are used to thinking
sequentially. Even current parallel programming
paradigms, such as message-passing, do not map well to
the underlying structure of the language. Rather, for those
familiar with parallel models, it is similar to the Parallel
Random Access Machine (PRAM) or the implied Single
Instruction Multiple Data (SIMD) model (JaJa, 1992).
That is, all processors are executing the same instruction
during the same time slice but using potentially different
data streams.
 Once algorithms are developed, they are usually tested
in a VHDL simulator with a wide range of test bench
examples. Simulators are vital for HDL to test for
correctness. Code must then be synthesized for the FPGA.
There are cases where code will fail this step. For
example, the test beds usually contain a clock to mimic the
hardware clock on the FPGA. Code with a clock will fail
to synthesize as this cannot be duplicated in hardware.
Further, if the user provides various constraints that cannot
be met the code may also fail to synthesize. Synthesis and
the place-and-route step involve heuristics as the problem
is a global optimization problem in how best to use the
underlying fabric. Code that is “too big” may also fail
these steps as the number of logic cells can be insufficient.
 In order to simplify the overall software design
process for FPGAs, several vendors are coming out with
solutions that are geared more for non-hardware experts.
During our course of investigating the applicability of
FPGAs to computational science, we will be analyzing
three different programming methodologies put forward by

leading FPGA vendors. Of course for core floating-point
or integer applications the requisite amount of time to
develop VHDL solutions will be investigated. Part of
this effort, however, is to judge how higher level
approaches to hardware descriptions might make the use
of FPGA technology more attractive to computational
scientists who either have no desire or lack the time to
field full-scale VHDL solutions.
 The first is from Celoxica and is called Handel-C.
Handel-C is a C-like language that follows the ANSI-C
syntax and semantics with extensions and restrictions to
specify hardware design. It is designed to produce
efficient hardware, provides for synchronization, and
allows one to use arbitrary word widths. Key to the
Handel-C approach is the par statement that expresses
what should happen in parallel. Figure 4 shows example
code with the serial, 4-cycle block show in (a) as
compared to the same code in (b) that can execute in
parallel in 1 cycle using the par construct.

// 4 clock cycles
 {
 i = 0;
 a = 1;
 b = 23;
 c = 99;
 }

// 1 clock cycle
par {
 i = 0;
 a = 1;
 b = 23;
 c = 99;
 }

(a) Standard C syntax
serial code.

(b) Handel-C code
representing a parallel
region.

Figure 4: Standard C serial code versus Handel-C

parallel constructs.

 The second development environment we will be
researching will be DIMEtalk from Nallatech. DIME-C
is a part of this package and is a C to VHDL function
generator. This is an interesting design approach as most
of the functionality of C can be used to generate libraries
that are then tied together using a graphics-based design
flow tool.
 Finally, we will be looking at tools developed by
Stone Ridge Technology that are also attempting to
address FPGA use at the compiler and library levels.
The individuals who formed this company have a
computational science background and hence understand
the software development methods and challenges for
large-scale DOD applications. These initiatives are
rather new and consist of a compiler collection and
domain libraries that implement common
computationally intensive algorithms and enhanced
versions of third party applications.
 Currently it is unclear what the ideal path to
performance will look like in the FPGA high-level
software world. It is quite possible that there is no ideal
solution but rather situations that are application and

developer dependent. It is also possible that the best
solution will be a mix of these approaches.

5. RECONFIGURABLE COMPUTING IN
PRACTICE

 For all but the most simplistic circuit designs, FPGAs
will act together with traditional CPUs to form a
heterogeneous, reconfigurable architecture for the next
generation of parallel computers. The most compute-
intensive segments of software will be offloaded to FPGAs
for hardware acceleration.

5.1 Hardware systems

 Desktop solutions with FPGAs are already available
for a host of problems. The traditional areas where
custom-built FPGA hardware accelerated computing is
making an impact include signal and image processing,
electromagnetics, and encryption. Large-scale speedup
can already be seen on applications running on single
FPGAs in these cases. A factor of 100 speedup is common
in the literature.
 However, there is no reason to stop at single FPGAs
to solve difficult problems. Recently there has been a push
to extend the viability of FPGA-based solutions into the
parallel world. HPC systems with FPGAs are being
fielded in the DOD High Performance Computing
Modernization Program. Several Cray XD1 systems are
available with clusters of over 100 FPGA processors.
These machines will be used by the authors to investigate
the use of coupled commodity clusters and FPGA devices
in a parallel system.
 According to Cray, one of the three main obstacles to
the adoption of reconfigurable computing is PCI bus
bottlenecks or data starvation to the FPGA (the other two
being job scheduling and programmability) (Cray Inc.,
2005). Indeed data starvation is a problem in some FPGA
cases where traditional bus speeds through PCI
connections are lacking. Cray has implemented a
proprietary system known as RapidArray to connect the
compute processors to the FPGAs over high bandwidth,
low-latency links. In the personal computer or workstation
market, vendors are moving to PCI-Express solutions for
FPGAs. Currently the majority of the boards offer PCI-X
solutions to improve bandwidth between FPGA and
processor. This is an intermediate step prior to full PCI-
Express support.

5.2 Application Areas

Whether it be one FPGA or hundreds connected in a
cluster, it is safe to say that all but the simplest
applications will involve some combination of generic
processors operating in conjunction with FPGA hardware.
Approaching computation-intensive programs for
optimization is already handled in this fashion. Here,

researchers generally look for a 90/10 rule in their code
that is surprisingly common across domains. Often
roughly 90% of the total execution time of a piece of
software resides in only 10% or less of the total source
lines of code. This 90/10 offloading rule will be the
fastest way to identify what code segments could
possibly be shipped to the FPGA for fast execution.
There should be no shortage of applicable application
areas.

Often when first encountering FPGAs researchers
are hesitant to investigate their use due to the low clock
speeds associated with the devices. However, this is
often misleading, but does provide some insight on what
application might be appropriate to target for FPGAs.
For example, consider a CPU at 4 GHz versus an FPGA
clocking at 400 MHz. Assume that the CPU takes one
cycle to produce an interesting result. One can easily see
that it would take an array of 10 Processing Elements
(PEs) in the FPGA fabric to match the performance of
the CPU. Of course, it usually takes well over one cycle
for a CPU to produce an interesting result. It must
serially read the data from memory and write any results
back. Other overheads such as the incrementing of
induction variables on loops and associated loop
overhead for branch and bound easily add to the clock
quantum to produce interesting results. Overall, with
today’s technology, a 10 PE rule of thumb helps to
determine viable FPGA applications.

To evaluate the use of FPGAs to the Army, we are
focusing on two distinct application areas. The first
deals with integer and bit-based computing technology.
Here we will be targeting encryption algorithms,
steganalysis, and data mining for intrusion monitoring
and protection. The ability to hide and encode messages
using standard encryption and ciphers is a major problem
for Army intelligence. Furthermore, the sheer size of
data collected on network traffic sensors is
overwhelming. The task of mining this data for potential
computer security breach is extremely time-consuming
using conventional computing.

The power of FPGAs to directly tackle these
problems with incredible speedup is a major drawing
force. We will be working with the Army Research
Laboratory’s (ARL) Center for Intrusion Monitoring and
Protection (CIMP) to identify applications for studying
FPGA utility in data mining. We have already identified
the “Blowfish” encryption code as a first-cut in
analyzing FPGAs in single and parallel mode against
standard implementations of this algorithm on
commodity chips. We will move into steganalysis upon
completion of these initial efforts.

The second main focus area will be on floating-point
intensive applications. We are currently targeting a
Classical or Quantum Monte Carlo (QMC) algorithm to
implement in hardware to compare against computers
having reported high FLOP-rate capabilities. QMC is a
good candidate for several reasons. First, it is broadly

representative of scientific computing algorithms. Second,
its structure, which allows fine and coarse grain
parallelization, pipelining, and calculation with integer or
fixed point data representation makes it a sound fit for
FPGAs. Finally, QMC is very time-consuming and can
easily take advantage of savings from hardware
acceleration with incredible impact.

6. CONCLUSION

The HPC community is currently facing a capability

gap that is only going to get worse. There are numerous
hardware and software development challenges that lie
ahead as we attempt to construct larger computer systems
to focus on computational science applications to key
Army requirements. Reconfigurable computing holds the
promise of a solution, but it will take substantial effort to
reach maturity. Within the next three to four years we
foresee more focus on this methodology with success
stories coming from the many modeling and simulation
codes currently running on commodity clusters.

ACKNOWLEDGEMENTS

The authors wish to thank those individuals from the

User Productivity Enhancement and Technology Transfer
(PET) Program of the DOD High Performance Computing
Modernization Program and the Naval Research
Laboratory who assisted in arranging various FPGA-
related training events.

REFERENCES

Aho, A., Sethi, R., and Ullman, J. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Publishing
Company, Reading, Massachusetts, June 1987.

Carriero, N. and Gelernter, D. How to Write Parallel
Programs: A First Course, The MIT Press,
Cambridge, Massachusetts, 1992, p. 5.

Cray Inc., “Cray XD1 Supercomputer for Reconfigurable
Computing”, 2005.

DeHon, Andre, “The Density Advantage of Configurable
Computing,” Computer, April 2000.

Fernando, Joseph, “Using FPGAs in High Performance
Computing,” Ohio Supercomputing Center, Lecture at
Naval Research Laboratory, 2006.

HPCWire, “HPCS Languages Move Forward,” HPCWire,
August 2006.

JaJa, Joseph, An Introduction to Parallel Algorithms,
Addison-Wesley Publishing Company, November
1992.

Meyer, Rob, “Emerging Multi-core Realities,” Scientific
Computing, August 2006.

 Post, Douglass, “The Coming Crisis in Computational
Science,” Keynote address, IEEE International
Conference on High Performance Computer
Architecture: Workshop of Productivity and

Performance in High-End Computing, Madrid,
Spain, February 2004.

Top 500 List. Web document maintained at
http://www.top500.org.

Wikipedia, http://www.wikipedia.org, Definition of
“reconfigurable computing” from September, 2006.

